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Abstract. Considering the nucleon as a system of confined valence quarks surrounded by pions we derive
a Galster-like parameterization of the neutron electric form factor Gn

E . Furthermore, we show that the
proposed parameterization can be linked to properties of the pion cloud. By this, the high-quality data
for the pion form factor can be used in predictions of Gn

E in the low-Q2 region, where the direct double-
polarization measurements are not available.

PACS. 13.40.Gp Electromagnetic form factors – 12.39.Jh Nonrelativistic quark model

The electromagnetic (e.m.) form factors of the nucle-
ons contain all the information on the internal nucleon
structure and in particular they are very sensitive to the
details of the interaction between the valence quarks. Al-
ready the first analyses by Hofstadter et al. [1] demon-
strated that the proton electric form factor can be de-
scribed by a dipole-type form

GD(Q2) = (1 +Q2/Λ2)−2 . (1)

Using the canonical Λ2
D = 0.71 GeV2, Gp

E is reproduced
up to four-momentum transfer Q2 ∼ 1 GeV2. Also the
magnetic nucleon form factors, Gp

M and Gn
M , are repro-

duced reasonably well. Recently, new precise polarization
experiments and new analyses [2–6] have brought clear
evidence for the deviations of the form factors from the
simple dipole form at high Q2. Slight deviations from the
dipole form at low Q2 have been attributed to the under-
lying pionic and quarkonic structure of the nucleons [4].

The neutron electric form factor Gn
E is the most

uncertain one due to its vanishing net charge and the
absence of free neutron targets. The internal structure of
the neutron is also reflected by a finite charge radius [7,8].
Understanding the measured 〈r2〉n = −0.115 ± 0.003 [9]
is still an interesting goal, since the contributing Foldy
term [8] of 3F2(0)/2M2

N = −0.126 fm2 almost equals the
measured 〈r2〉n value. At the same time, a recent analysis
by Isgur [10] indicates that the Foldy term does not
really explain the neutron charge radius and its charge
distribution, because in leading order of the relativistic
approximation to the constituent-quark model (CQM)
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the Foldy term is canceled exactly by a contribution to the
Dirac form factor F1. This result was confirmed by ref. [11]
where it was argued that both the success of the CQM in
reproducing the ratio of the proton to neutron magnetic
moments and the success of the Foldy term in reproducing
the observed charge radius of the neutron are coincidental.

The extraction of the nonzero charge form factor
Gn

E from elastic electron scattering off the deuteron is
rather model dependent [1,12,13]. In recent years Gn

E has
been studied successfully by double-polarization experi-
ments [14] and the most recent parameterizations in the
range up to Q2 ∼ 1 GeV2 seem to converge [3–5,15,16].
The so-called Galster [12] parameterization of Gn

E is based
on the same dipole form GD(Q2) as for the proton. In oder
to account for the condition Gn

E(Q
2 = 0) = 0 required by

the vanishing charge of the neutron, GD is multiplied by
an appropriate function. Out of four trial functions [12],

Gn
E(Q

2) =
aGτ

1 + bGτ
GD(Q2) (2)

served best, where τ = Q2/4M2
n and Mn = 0.939 GeV2

is the neutron mass. Originally [12], the parameter aG

was set equal to −µn and the fit to the data resulted in
bG = 5.6. More recent fits, e.g. ref. [4], obtain a ∼ 1.73
which reproduces the measured root-mean-square radius
of the neutron and determines b = 4.62.

Theoretically, up to now the Galster parameterization
has no particular theoretical justification and is consid-
ered as a purely empirical description, i.e. aG and bG are
fitting parameters. In this paper we wish to show that the
parameterization of the neutron electric form factor Gn

E
can be derived directly under certain assumptions about
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the pionic content of the nucleon. We found that all pa-
rameters of eq. (2) can be fixed by other experiments and
are connected with the existence of pions in the nucle-
ons. In order to disentangle shape and magnitude of Gn

E
we propose the use of the parameter a′ which is defined
as aG = a′ · bG. The parameter bG can be related to the
pion electromagnetic form factor Fπ and a′ to the spec-
troscopic strength of the pions (number of pions) in the
nucleon. With this prescription, reasonable parameters en-
tering in eq. (2) are obtained supporting the proposed
interpretation. Using “our” Galster-like parameterization
we are also able to relate the data for the pion e.m. form
factor Fπ as provided by electroproduction experiments to
the neutron electric form factor Gn

E . By this procedure, a
high-quality representation of Gn

E can be obtained in the
low-momentum transfer-region, where the direct double-
polarization data are still not available and would have
large corrections due to final-state interaction.

By now it is well established that the pion cloud plays
an important role in understanding the variety of elec-
tromagnetic and hadronic properties of nucleons in the
low-energy, nonperturbative region of QCD [17,18]. The
coupling of the pion field to the nucleon quark core and
the resulting pion loop (pion cloud) corrections are im-
portant ingredients of the so-called chiral quark models
(χQM) [18] where the pions are the Goldstone bosons
generated by spontaneous breaking of SU(2)R × SU(2)L
chiral symmetry. Easily the scheme can be generalized to
the octet of light pseudo-scalar mesons (π, K, η) as pro-
vided by SU(3)R × SU(3)L. Formally, the pion cloud can
be introduced into the nucleon structure by the pertur-
bative expansion of the nucleon Fock space. This proce-
dure is reflected in the two-component structure of the
nucleon wave function ΨN = (Ψ3q, Ψ3q+π), where the first
component, Ψ3q, represents the bare nucleon consisting of
valence quarks, and the second one, Ψ3q+π, is the quark
core dressed by a pion cloud which is mainly responsible
for the soft physics. The presence of a soft pion cloud as
an actual dynamical degree of freedom is crucial in under-
standing the neutron electric form factor Gn

E . In χQMs at
the one-pion loop level, the neutron charge form factor is
a first-order effect of the pion cloud and originates mainly
from the Fock component of the neutron wave function
consisting of a π− cloud and a positively charged core of
confined quarks. This physical picture gives a natural ex-
planation of the nonvanishing charge-distribution inside
the neutron which otherwise, like in the simplest version
of nonrelativistic quark model (NRQM) with three valence
quarks only, results in zero [17].

Consider the effective SU(2)R×SU(2)L Lagrangian of
the χQM which can be written formally as [18]

L = L(2)
π + L(1)

πqq , (3)

where the mesonic Lagrangian L(2)
π of lowest order in the

derivative expansion is given by the nonlinear σ model
and the L(1)

πqq is an effective pion-quark Lagrangian

L(1)
πqq = − 1

4f2
π

ψ̄γµτψ[π × ∂µπ]− fπqq

mπ
ψ̄γµγ5τψ∂µπ (4)

(a) (b)

Fig. 1. One-pion loop self-energy diagrams. The intermediate
state in (a) can be a nucleon or a ∆. The tadpole (Hartree)
diagram in (b) vanishes due to its isospin structure.

where ψ and π are a quark and a pion field, respectively,
and the coupling constant fπqq characterizes the strength
of the pion-quark interaction. The coupling of the pion
field to the core of confined quarks, eq. (4), results in pion
loop corrections as provided by the self-energy pion loop
diagrams shown in fig. 1 already on the hadronic level.
Note that the underlying quark substructure of the di-
agrams is reflected in the appearance of hadronic form
factors as shown by filled circles. The tadpole diagram
(fig. 1(b)) vanishes due to its isospin structure and fig. 1(a)
is characterized by the loop integral −iΣα(E) (see its ex-
plicit expression in ref. [18]), where the intermediate states
α are a N(939) or a ∆(1232). Figure 1(a) introduces the
pionic degrees of freedom into the nucleon structure and
mathematically requires the renormalization of the total
nucleon wave function |ΨN 〉R = Z

−1/2
2 |ΨN 〉, where the

constant Z2 is given by

Z2 ≡ 1−
∑
α

∂Σα(E)/∂E|E=MN
(5)

and describes the probability of finding the “physical” nu-
cleon in its bare three-quark valence Fock state. It also
guarantees R〈ΨN |ΨN 〉R = 1. The value Z2 can be related
to the pionic content of the nucleon, namely to the pion
spectroscopic factor, which represents the number of pions
in the nucleon Sπ =

∑
α

Sα
π = (Z2 − 1)/Z2 or

Sα
π = − 1

Z2

∂Σα(E)
∂E

∣∣∣
E=MN

. (6)

The explicit introduction of the additional degrees of
freedom in the nucleon structure will change its proper-
ties as compared to expectations based on simple quark
models in which the nucleon is described as a system of
three valence quarks only. For example, the coupling of
the e.m. field Aµ to the conserved e.m. currents due to
a quark charge Q = [1/3 + τ3]/2 which is achieved by a
photon-quark interaction

L(1)
γqq = −e Qψ̄γµψAµ , (7)

should be supplemented by the coupling of the photon
field to pions and is given by the γπ interaction Lagrangian

L(2)
γππ = −e [π × ∂µπ]3Aµ ; (8)
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(a) (b) (c)

(f)(e)(d)

Fig. 2. E.m. currents at one-pion loop level.

with additional contact interactions obtained by a gauge
transformation of the pion field of eq. (4) we get

L(1)
γπqq = −e fπqq

mπ
ψ̄γµγ5[τ × π]3ψAµ , (9)

L(1)
γππqq = −e 1

4f2
π

ψ̄γµ[[τ × π]× π]3ψAµ . (10)

Considering eqs. (7)-(10) at the one-pion loop level, the
full set of diagrams responsible for the neutron charge
form factor are shown in fig. 2. Since the bare quark core,
eq. (7), and the “seagull” terms (∼ O(1/Mn)) shown in
fig. 2(b) and (c) do not contribute and since the tad-
pole contact graphs, fig. 2(e) and (f), cancel exactly,
the leading-order contribution arises from two one-pion
loop processes with γqq (fig. 2(d)) and γππ couplings
(fig. 2(a)), respectively. Following to the standard Feyn-
mann rules the e.m. current operators responsible for
fig. 2(a) and (d) can be constructed and in the Breit frame,
where Q2 = q2, the resulting Sachs electric form factors
of the neutron can be obtained as

Gγqq
En

(q2)=
G̃(q2)
Z2

∑
α

KNα

∫
d3k

(2π)3
k2F 2(k2) Cγqq

α (q,k),

(11)

Gγππ
En

(q2) = −Fπ(q2)
Z2

∑
α

KNα

×
∫

d3k

(2π)3
F (k2)F (k′2)Cγππ

α (q,k,k′)k·k′, (12)

where KNα = (fπqq/mπ)
2
C2

Nαχ
α and k′ = k+q. The co-

efficients are calculated algebraically within the CQM and
result in χN = 2, χ∆ = −4/9, CNN = 5/3 and CN∆ =
2
√
2. Fπ(q) is the pion e.m. form factor and F (k) is the

nucleon axial form factor. Furthermore, G̃(q2) in eq. (11)
represents the electric form factor of the quark core. At
the one-pion loop level the e.m. current operators as pro-
vided by fig. 2 involve a four-dimensional integration over
the momentum k of the virtual pions. The momentum-
dependent factors Cγππ

α (q,k,k′) and Cγqq
α (q,k) are the

result of the integration over k0, which we perform an-
alytically by closing the contour in the lower half of the
complex plane. Equations (11) and (12) are exact and hold
for any chiral quark model involving a cloud of pions. In-
stead of doing model calculations at this stage we proceed
further by simplifying them. It can be shown that in the
limit of low Q2, eqs. (11) and (12) can be reduced to


Gγqq

En
(q2)

Gγqq
En

(q2)


 =

[∑
α

ξαS
α
π

] {
G̃(q2)

−Fπ(q2)F (q2)

}
, (13)

where Sα
π is given by eq. (6) and the spin-isospin factors

are ξN = 2/3 and ξ∆ = −1/3. Here the pion e.m. form
factor Fπ(q), the nucleon axial form factor F (q) and the
core electric form factor G̃(q2) are the relevant ingredients
which define the Q2 behavior of the reduced form fac-
tors. The latter two are characteristics of the quark core.
Their appearance is quite unique in all the quark mod-
els —they do not exist in effective Lagrangian approaches
at hadronic level. The important feature of the CQM, at
least for our considerations, is that the axial F (q2) and
electric G̃(q2) form factors have the same functional form:
F (q2) = G̃(q2). We use this fact to recombine eqs. (13) as

Gn
E(q

2) = G̃(q2)
[
1− Fπ(q2)

] ∑
α

ξαS
α
π . (14)

Furthermore, as known from electroproduction experi-
ments the pion e.m. form factor Fπ(q2) can be fitted up
to a few GeV [19,20] by a monopole term

Fπ(Q2) = Λ2
π/(Λ

2
π +Q2) = (1 +Q2/Λ2

π)
−1 , (15)

with a cut-off mass Λ2
π = 0.53 GeV2 [19,20]. Using eq. (15)

the expression for Gn
E can be written alternatively

Gn
E(Q

2) =
∑
α

ξαS
α
π ·

[
Q2/Λ2

π

1 +Q2/Λ2
π

]
G̃(Q2) . (16)

We define the two parameters a′ and b as

b = 4M2
n/Λ

2
π and a′ =

∑
α

ξαS
α
π . (17)

If we assume in addition that the quark core electric form
factor is given by the dipole ansatz, G̃ = GD, we then
arrive at a Galster-like formulation for Gn

E (cf. eq. (2)):

Gn
E(Q

2) = a′
bτ

1 + bτ
GD(Q2) , (18)

where τ = Q2/4M2
n. Already at this level “our” Galster

form decouples the parameters responsible for shape (b)
and magnitude (a′), which reduces the uncertainty for b
by about a factor 2 in the fits. Note that the form of G̃
is model dependent; however, its generalization to other
hadronic models is straightforward. Presently, we have
used the dipole form to make the direct correspondence
with the Galster ansatz.
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Fig. 3. The neutron electric Gn
E form factor. Squares:

polarization data from ref. [14]. Circles: elastic electron-
deuteron data [16]. Triangles: eq. (20) with pion data of
refs. [19,20]; (open symbols: Λ2 = 0.71 GeV2, full symbols:
Λ2 = 0.86 GeV2). The insert shows the low-Q2 range with
additional pion data [21].

a′ in eqs. (17) and (18), which characterizes the spec-
troscopic strength of the pions in the nucleon, can be also
fixed by imposing additional constraints coming from the
experimental value of the neutron charge radius 〈r2〉n. The
latter is defined as the slope of Gn

E(Q
2) for Q2 → 0, and

applying this prescription to eq. (16) we obtain

〈r2〉n = −(6/Λ2
π)

∑
ξαS

α
π or a′ = −〈r2〉n(Λ2

π/6). (19)

Assuming 〈r2〉n and Fπ to be known, an even simpler ex-
pression for Gn

E emerges,

Gn
E(Q

2) = −〈r2〉n
6

Q2Fπ(Q2) GD(Q2) , (20)

with no additional parameter. We mention that in eq. (20)
all quantities responsible for the properties of the pion
cloud are experimentally accessible. This fact can be used
to obtain the Gn

E values directly from 〈r2〉n and Fπ.
Inserting the experimental values for 〈r2〉n [9] and for

Fπ as extracted from electroproduction experiments [19,
20] directly into the above equation we obtain the data
(open triangles) plotted in fig. 3. For comparison, Gn

E val-
ues selected by ref. [4] are given by squares and the eval-
uation of ref. [16] is presented by circles. The remarkable
feature of the pion data is that they have smaller errors
and that they lead to slightly smaller values for Gn

E above
Q2 = 0.3 GeV2. In fig. 3 the full curve represents the fit
to the Gn

E data [4,14] including the 〈r2〉n value, whereas
the dashed curve represents the fit to the pion data with
Λ2

D = 0.71 GeV2 with reasonable χ2 (table 1).
We note that, the use of Λ2

D = 0.71 GeV2 in eq. (18) is
not entirely correct as G̃ represents the core and not the
extension of the total charge. Using parameters a′ and b
according to the above formulae, Λ2 = 0.86 GeV2 is ob-
tained from a fit to the polarization data (third fit of ta-
ble 1). The resulting curves from the first and third fit are

Table 1. Galster fits to Gn
E data.

Ref. a′ b Λ2/GeV2 χ2/n.d.o.f.

[4,14] 0.369 ± 0.008 4.69 ± 0.11 0.71(a) 9.9/14

[19] 0.221 ± 0.002 8.21 ± 0.16 0.71(a) 34.2/19

[4,14] 0.26(a) 6.65(a) 0.86 ± 0.04 9.7/15

(a) Fixed in the fit.

identical below Q2 = 2 GeV2 despite the different param-
eters. Using this Λ2 = 0.86 GeV2, which corresponds to a√〈r2〉 = 0.74 fm of the core, results in derived Gn

E values
(full triangles in fig. 3) similar to the measured polariza-
tion data. The insert show the obtained Gn

E data for very
low-Q2 range where more pion data [21] have been added.
In this momentum transfer region Fπ can be understood
to provide a model-independent input to Gn

E . Since G̃ is
close to unity, Gn

E is considered to be parameter free at
low Q2. Interestingly, the Gn

E data from pion electropro-
duction fall right on top of the full curve. Clearly, the pion
data can only account for the soft contributions; however
they give a lower limit for Gn

E when using ΛD. Parame-
ter a′ shows that the weighted sum of pion spectroscopic
factors is in the range of 25% (table 1).

In summary, in this work we have obtained a the-
oretical justification of the phenomenologically success-
ful Galster parameterization of the neutron electric form
factor Gn

E . We have shown that the chiral (pion cloud)
content in the nucleon structure is the crucial ingredient
that leads under some approximations to a Galster-like
Q2-dependence of Gn

E . We found that all parameters of
eq. (18), i.e. a′ and b, can be fixed by other experiments
and that they are connected with the existence of pions in
the nucleons. The proposed parameterization of the Gn

E ,
eqs. (18) and (20), decouples the parameters responsible
for shape (b) and magnitude (a′) and allows to derive pre-
cise Gn

E data at low Q2 where the direct measurements
of Gn

E by double-polarization experiments require larger
corrections factors due to the notorious final-state inter-
actions.

We finally mention, that an analog prescription,
eq. (20), can be set up for the strange electric form factors
and the strange radius of the nucleon.
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